Results on the classification challenge
NOTE: After the challenge in July 2017, we updated the "baseline" methods [159,160,161,162,163,164] for which we optimized the hyperparameters following a k-fold crossvalidation on the training dataset.Method | Cohen Kappa Score | Accuracy | Mean Precision | Mean Recall | Articulated Truck | Bicycle | Bus | Car | Motorcycle | Non-motorized Vehicle | Pedestrian | Pickup Truck | Single Unit Truck | Work Van | Background |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bagging + CNN [107] | 0.9666 | 0.9786 | 0.9355 | 0.9041 | 0.9412 | 0.8739 | 0.9593 | 0.9866 | 0.9131 | 0.7078 | 0.9610 | 0.9510 | 0.8273 | 0.8258 | 0.9980 |
Joint fine-tuning with DropCNN [124] | 0.9681 | 0.9795 | 0.9530 | 0.8970 | 0.9324 | 0.8949 | 0.9779 | 0.9853 | 0.9111 | 0.5228 | 0.9406 | 0.9539 | 0.8336 | 0.9166 | 0.9984 |
Ensemble of Local Expert and Global Networks [125] | 0.9675 | 0.9792 | 0.9298 | 0.9024 | 0.9358 | 0.8774 | 0.9620 | 0.9889 | 0.9212 | 0.6872 | 0.9425 | 0.9507 | 0.8289 | 0.8353 | 0.9966 |
Ensemble of Deep Networks: Network A,B and C [150] | 0.9658 | 0.9780 | 0.9439 | 0.9190 | 0.9451 | 0.8984 | 0.9794 | 0.9790 | 0.9374 | 0.7237 | 0.9348 | 0.9624 | 0.8445 | 0.9059 | 0.9980 |
AlexNet [159] | 0.8325 | 0.8917 | 0.6916 | 0.5603 | 0.6220 | 0.3047 | 0.8596 | 0.9058 | 0.2182 | 0.0000 | 0.7604 | 0.8430 | 0.2445 | 0.4203 | 0.9847 |
DenseNet [160] | 0.9585 | 0.9734 | 0.9163 | 0.8705 | 0.9142 | 0.8354 | 0.9523 | 0.9857 | 0.8525 | 0.5571 | 0.9585 | 0.9323 | 0.7984 | 0.7919 | 0.9969 |
Inception V3 [161] | 0.9408 | 0.9618 | 0.8478 | 0.8278 | 0.9231 | 0.8266 | 0.9066 | 0.9723 | 0.8121 | 0.3037 | 0.8665 | 0.9355 | 0.7781 | 0.7911 | 0.9903 |
Xception [162] | 0.9627 | 0.9761 | 0.9085 | 0.9064 | 0.8891 | 0.8564 | 0.9752 | 0.9872 | 0.9131 | 0.7763 | 0.9367 | 0.9202 | 0.8125 | 0.9067 | 0.9972 |
ResNet-50 [163] | 0.9484 | 0.9668 | 0.8582 | 0.8706 | 0.9374 | 0.8827 | 0.9407 | 0.9788 | 0.8808 | 0.6370 | 0.8812 | 0.9272 | 0.7492 | 0.7696 | 0.9917 |
VGG-19 (with Batch Norm) [164] | 0.9323 | 0.9564 | 0.8530 | 0.8245 | 0.8856 | 0.7531 | 0.9426 | 0.9640 | 0.8626 | 0.3858 | 0.9214 | 0.9292 | 0.7047 | 0.7283 | 0.9917 |
DECM-BS [184] | 0.9651 | 0.9776 | 0.9201 | 0.8844 | 0.9312 | 0.9037 | 0.9663 | 0.9889 | 0.9010 | 0.5594 | 0.9022 | 0.9402 | 0.7898 | 0.8468 | 0.9984 |
RXD-CV-CW_then_NCW [231] | 0.9676 | 0.9793 | 0.9343 | 0.8940 | 0.9324 | 0.8897 | 0.9678 | 0.9905 | 0.9293 | 0.5479 | 0.9387 | 0.9329 | 0.8148 | 0.8914 | 0.9984 |
RXD-CV-CW [232] | 0.9638 | 0.9767 | 0.8950 | 0.9127 | 0.8891 | 0.9159 | 0.9698 | 0.9823 | 0.9232 | 0.7192 | 0.9342 | 0.9491 | 0.8438 | 0.9174 | 0.9963 |
RXD Weighted-Average Ensemble [239] | 0.9660 | 0.9783 | 0.9422 | 0.8827 | 0.9451 | 0.8792 | 0.9698 | 0.9912 | 0.9253 | 0.5114 | 0.9489 | 0.9283 | 0.7578 | 0.8547 | 0.9986 |
Augmented RXD Super Learner [243] | 0.9678 | 0.9794 | 0.9215 | 0.9027 | 0.9219 | 0.8722 | 0.9779 | 0.9894 | 0.9172 | 0.6621 | 0.9374 | 0.9370 | 0.8219 | 0.8947 | 0.9979 |
References :
- [107] PyongKun Kim, et al., " Vehicle Type Classification Using Bagging and Convolutional Neural Network on Multi View Surveillance Image", Traffic Surveillance Workshop and Challenge, CVPR 2017.
- [124] H.Jung, MK Choi, J.Jung, JH Lee, S.Kwon, WY Jung "ResNet-based Vehicle Classification and Localization in Traffic Surveillance Systems", Traffic Surveillance Workshop and Challenge, CVPR 2017.
- [125] Jong Taek Lee, et al., "Deep Learning-based Vehicle Classification using an Ensemble of Local Expert and Global Networks", Traffic Surveillance Workshop and Challenge, CVPR 2017.
- [150] Rajkumar Theagarajan, et al., "EDeN: Ensemble of Deep Networks for Vehicle Classification", Traffic Surveillance Workshop and Challenge, CVPR 2017.
- [159] A Krizhevsky, I. Sutskever, G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of NIPS 2012, p.1097-1105.
- [160] Gao Huang, Zhuang Liu, Kilian Q Weinberger, Laurens van der Maaten. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993.
- [161] C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens. Rethinking the inception architecture for computer vision. roceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818-2826).
- [162] Chollet, François. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv preprint arXiv:1610.02357, 2016.
- [163] K He, X Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. Proceedings of CVPR 2016, p.770-778.
- [164] K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. Proceedings of ICLR 2015, p.1-14.
- [184] Anonymous
- [231] Anonymous
- [232] Anonymous
- [239] Anonymous
- [243] Anonymous